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Abstract. A method is presented to calculate ab initio exchange constants and spin-wave
excitations of multi-sublattice magnetic structures on the basis of total-energy calculations of
incommensurate magnetic siructures. Here the exchange energies, dispersion curves and Curie
temperature for magnetite (Fe30y) are obtained and compared with experimental results.

1. Introdoction

Ab initio calculations of exchange integrals and order temperatures for ferromagnetic
3d metals and their compounds is a non-trivial problem. Despite the success of band
structure calculations in the description of ground-state properties of condensed matter, the
determination of the temperature dependence of magnetic properties (and most others) meets
with some difficulties. Concerning ferromagnetic metals, a number of different methods
have been tried. In this context we mention the theory by Wohlfarth and Mohn [1],
who determined the Curie temperatures of itinerant electron magnets from band structure
calculations considering the effect of spin fluctuations via a renormalization of Landaw
coefficients. Another way to calculate temperature-dependent properties is by means of the
disordered local moment theory (see for instance [2]).

More recently, the possibility of simulating non-collinear arrangements of spins and
particularly incommensurate spin-spiral magnetic structures in elementary cells [3-7] has
led to an estimate of Heisenberg exchange integrals in metals and alloys. Rather reasonable
estimates of Curie temperatures were thus obtained [4-7].

In a previous paper [8] the electronic and magnetic properties of FesO4 and spinel ferrites
were investigated. The aim of this work is to carry out calculations of exchange integrals
for the ferrimagnetic spinel FesO4 and thus derive an estimate of its Curie temperature.

After a description of the theoretical background, calculations of exchange integrals are
presented together with a calculation of the spin-wave spectrum. Finally, the results are
compared and discussed in connection with other theoretical results and with experimental

data.

2. Total-enexrgy calculations of spin-spiral configurations

To make this paper reasonably self-contained we first repeat some salient theoretical points,
particularly when they deviate in detail from the formulation given in earlier papers {9, 10].

The work to be described consists of self-consistent band structure and total energy
calculations in the local density approximation [11, 12]. It makes use of the scalar relativistic
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augmented spherical wave (ASW) method [13] suitably generalized for dealing with rather
general non-collinear moment arrangements of spin-spiral configurations [9,10]. The
effective single-particle Hamilton operator H [11,12] for spin-polarized electrons forming
a non-collinear magnetic order is as usual obtained from the Euler-Lagrange equations
minimizing the total energy as a functional of the density matrix, and may be wiitten in
bi-spinor form as [14, 15]

H=-91+) UiV (r — 1)U, (2.1)
v

Here we use the label j fo designate the unit cell and the label v the basis atom, and we
imply an atomic-sphere approximation, i.e. the effective potential V, is defined to vanish
outside its respective atomic-sphere radius. The quantity U;, is the standard spin-%-rotation
matrix

_ [ cos(8,/2) sin(8,/2) exp(+ig - ¢;,/2) 0
U= ( —sin(@,/2) cos(d, /2)) ( 0 ! exp(—iq - t;, /2)) (2.2)

which describes a transformation between a global and a local spin coordinate system where
the directions of the local magnetization at the sites designated by the translation vectors
{t;y} are given by the polar angles {6}, ¢u} defining a spin-spiral configuration of a spin-
wave vector ¢ &5, =6, and ¢y, = g < L.

In this case the Hamiltonian given by (2.1) commutes with generalized translations
defined by Hering [16], who showed that a generalized Bloch theorem can be used to
construct the eigenfunctions of the problem defined by (2.1) [14-16). This means in
particular that for any choice of the wave vector g it is the chemical Brillouin zone that
constitutes the domain for the &-vectors to be used for sampling the elements of the density
matrix. This makes self-consistent calculations feasible even for cases with a non-trivial
unit cell, like that of Fe304. For a detailed description of calculating incommensurate spin
spiral configurations with the non-collinear ASW method see [9, 10].

3. Calculation of exchange constants

To calculate spin-wave excitations of Fe:Oy we assume the magnetic moments to be
localized. By this we mean that we can describe the spin system by the Heisenberg
Hamiltonian

H==3 Iutyu -8, - 8t). (3.1)

i, jv

Here S‘(t_,-,,) is the spin located at the magnetic site labelled by £;, and J,,(t;; —¢;0) is the
exchange constant that describes the interaction between the spins at the sites ¢, and ¢;,.
Treating the spins as classical observables in a spin-spiral configuration, we may prescribe
the direction of a spin §(%;,) by its length S, its polar angle 8, and the spiral vector g
expressed in cartesian coordinates as

S(t),) = S,(cos(q - t;,) sin b, sin(q - £;,) sin By, cosd,). (3.2)
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Thus in a spin-spiral configuration the magnetic exchange energy per unit cell is given by:

1 . .
E@q. (6.) =+ D SuSuduslhi ~ tu)(cos(q - (B — t50)) sin, sind, + cos b, cos4,).
i, Jjv

(3.3)
The crystal structure of FesQy is shown in figure 1. Here the iron ions are located at two
antiparallel ordered sublattices A and B, consisting of two tetrahedral Fe, sites (A1, A2)
and four octahedral Fep-sites (B1-B4). Here the classical ferrimagnetic ground state can
be treated as a two-sublattice collinear Néel configuration [17]. In our calculations we pivot
the spins of the iron sites only, see figure 2. Thus (3.3) gives

E(q,64,98) = =55 Y naa(Ra)aa(Ra)cos(q » Re) sin® 04 + cos? 4]

oxeAA
— 53 D nas(Re)aa(Rp)lcos(q - Rg)sin® 05 + cos” 6p]
BeBEB
+ 845z Z nag(Ry, ) 4g(R,)[cos(q + R, )sinf4sinfp + cosd4 cosp]
yeAB
+cosBanalsc +cos aBnBIBC (3.4)

where the size of the spin S, and the angle 64 refer to the tetrahedral Fe? site, and Sz, 85
refer to the octahedral Fe? site. Furthermore J44, Jap and J4p are appropriate exchange
constants between the iron atoms and rn 44, #pp and nap their weights per unit cell. Finally,
Ic and I'pc describe the exchange energy between an iron site and the ‘background’, caused
by a small magnetization of the oxygen and empty sphere sites.
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Figure 1. Two octants of the spinel
B1i P structure of magnetite. The spins and
g e e the positions of the iron sites are labeled.
The open circles represent oxygen sites.
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Using (3.4) the exchange constants J44(Ry,), Jep(f) and J4p(R,) can easily be
calculated by

Sinaa(Bo)Tan(By) = ~ s f d*q cos(g - R,)(E(g.8,0) — E(0,9,0))

-1
Shras(Re)Ias(Re) =~ [ Pacostq- Ry)(E(@.0,6) — E0,0.9)) 35
$4Sam a5 (Ro)Iaa(Ry) = ——— [ Pqcosta- B)(E@,6,6) - £0,6,6))

— 82naa(R,)Jaa(Ry) — Sinpp(R,)Jpp(R,)
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where the quantities E(g, 84, 6p) are obtained by total-energy calculations. Since the ground
state of magnetite is ferrimagnetic we get E(q, 84, 83) > E(0, 0, 0) for all states.

4, Calculation of the spin-wave spectrum

To calculate spin-wave energies we make the spin-wave approximation of considering the
z components to be invariant and keeping only terms linear in the transverse components.
Thus we rewrite the Hamiltonian of (3.1) as follows:

A== Jutiy — ) (5 )8 @) + §¥ 08 @) (4.1)

Fg, v

In FesQ, the ground state can be approximated by a collinear ferrimagnetic eigenstate of
two antiparallel ordered sublattices {A} and {B} (Néel [17]), which may be specified as
0} = l'[jv JAuSu(t;y)). Here 8,(t;,) denotes the spin located at the site £;, and A, the
direction of its magnetization, i.e. A, = =1 for a tetrahedral site (v € A) and A, = <41 for
an octahedral site (v € B). The corresponding energy of the Néel ground state is

€= — Z -]p.u(t:,u. - tju)lulvsﬂ(tip)sv(tju)-
i, v
Using Bloch’s theorem the spin-wave energies ¢ (k) are determined by

H\k) = (60 + (k) k) (4.2)
and
1 . e
k) = —= Z C.(k) ;expuk - 4387 (1,10}, 4.3)

Analogous to Glasser and Milford [18] and Nauciel and co-workers [19], but now including
not only nearest-neighbour interactions, the solution of the eigenvalue problem defined by
(4.2) and (4.3) leads to the following secular equation:

Y MuSuEu@®C, (k) = ) A8, By (R)C, (k) = e(R)C, (k) 44
" 4

where E,, (k) are calculated by Fourier transformation of the exchange constants between
the sites v and u:

Euulk) =2 explik - (¢ — to )ty — toy). (4.5)
i
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5. Results and discussion

Since the touching muffin-tin spheres only fill about 40% of the volume of the unit cell,
we choose a set of 18 additional so-called ‘empty spheres’ (£S) [8]. Thus, in the space
group Fd3m [20, 21], the calculations are done with 32 sites per unit-cell, i.e. two iron sites
Fe? at the Wyckoff positions (a), four iron sites Fe? at (d), eight oxygen sites O at (e),
two ES at (), four ES at (¢) and, finally, twelve ES at (f). The lattice constant is given
bya = 8.394 A [8,22] and for the Wigner-Seitz radii we use the values of Pénicaud and
co-workers [8].

To calculate the density of states self-consistently we employ a set of 216 k points
spread uniformly over the full Brillouin zone. Whereas the collinear ferrimagnetic ground
state has the full cubic symmetry (), in excited spin-spiral configurations the symmetry
is reduced and given by group elements {D}, which keep the spiral vector g invariant:
Dgq = g [15, 23]. Therefore, the number of irreducible & points varies from 28 in the case
of the ferrimagnetic ground state 10 216 in the case of spin-spiral configurations that possess
no symmetry.

To describe spin waves by fixed spin-spiral calculations, we pivot the angles of the
magnetic Fe# and Fe? sites, see figure 2. To include all magnetic exchange contributions,
ie. FeA—FeA, Fe?-Fe® and Fe-Fe? interactions, we do spin-spiral calculations with (i)
84 = 30° and fg = 30°. Furthermore, to obtain the Fe*—Fe* and Fe®-Fef contributions
separately, we use (ii) 64 = 30° and 85 = 0° and (iii} 64 = 0° and 6p = 30°. To obtain
reasonable values of exchange constants by comparing total energies of the three series for
the same values of g, we assume here that the magnetic moments of the Fe and Fe? sites
are well localized, i.e. the change in the magnetic moment Amp, < 0.05up with different
magnetic configurations. Since the magnetic moments of the oxygen- and empty-sphere
sites mq, mes, are small (< 0.2ug), we do not pivot the spin directions of these sites and
neglect their magnetic contributions.

To calculate all exchange constants J{x) with & = (x;, x2, x3) up to [x1], |x2|, |x3[ € a
by Fourier summation of the exchange energies E{(g), one has to choose a cubic mesh
of spiral vectors g with Ag; = Agy = Agy = m/a. Since the reciprocal volume of the
Brillouin zone £ is || = 4(27/a)?, we require 32 g points per Brillouin zone.

Since all magnetic sites of magnetite are fixed on positions of a Jones lattice given by a
body centred cubic structure with a lattice constant of @' = %a, see figure 1, the exchange
energy E{q, {6,}) (and in particular E(q, 30°, 30°)) is periodic with the Jones zone 245
having a volume of |Q245| = 128(27 fa)® = 32|S%|. In other words the total energy of
(3.4), E(q, 84, 88), describes 32 modes in the Brillouin zone.

In the same manner, to caiculate the single-sublattice excitations E(q,30°,0°) by a
pivot of only Fe# spins and E(q, 0°,30°) by a pivot of only Fe? spins, one can restrict
the reciprocal space to the Jones zone 244 (Q2z5) defined by the Fe# sites (Fe? sites), i.e.
1244] = 4|S20] and [$2z8] = 8|S

Thus, the exchange constants Jap(x) (Jaa(x), Jaa(x)) are calculated by (3.5) using a
mesh of 1024 (128, 256) q points in 245 (244, Rpa).

Figure 3 shows the calculated energy contributions of (3.5): (@) Eaa(g) =
E{g,30°,0°)—E(0, 30°,0°), (b) Egg(q) = E(qg,0°,30°)—E(0,0°,30°), and (¢) Ez{g) =
E{g,30°,30°) — E{, 30°, 30°), fitted by (3.4). Since the spin excitations are obtained by
ground-state calculations of spin-spiral configurations, we multiply total energies by the
ad hoc factor S/(S + 1) for (3.5). Here we use Sy = % and Sg = %, which gives a total
magnetization of § =48 — 25, =4 [18,19,24],

In table 1 we list the exchange constants Ja4(x), Jpp(x) and J,p(x), see (3.5). The
quantities nz44(x), ngp(x) and nap{x) of table 1 denote the number of times they appear
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Figure 3. Calculated energy differences of spin-spiral configurations. (a) Single-Fe-sublattice
excitations: 64 = 30°, 6a = 0°, (b) Single-Fe?-sublattice excitations: B4 = 0°, g = 30°. {c)
Excitations including both sublattices: 8, = 30°, fg = 30°.
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Figure 3. (Continued)

in the unit cell. Furthermore, the total exchange energies of the sublattices Jaa, jgﬂ and
Jaz are also calculated,

Table 2 shows a comparison of calculated and experimental values of nearest-neighbour
exchange constants. Our results confirm that the nearest-neighbour exchange constant
between the Fe? and the Fe? sublattices, I35 = Jaz(1, 1, 3), plays a dominant role [18,25-
28]. Since JLN is negative, the sublattices order antiparallel. Moreover, the magnetic
exchange between neighbouring A sites JAN = J44(2,2,2) and neighbouring B sites
IO = Jg5(0,2,2) give substantial contributions to the exchange energy.

In agreement with experimental values we obtain ferromagnetic coupling between
neighbouring B sites (JJ§ > 0) and antiferromagnetic coupling between neighbouring
A sites (J32 < 0) [17, 18,24, 28-31]. From figure 3(a) it is seen that the energy difference
EA4(q) is negative over a wide portion of the Brillouin zone, whereas Ezz{q) (figure 3(5))
and E,p(qg) (figure 3(c)) give positive contributions for all values of g.

In the second line of table 2 the constants J54. J35 and J45 are determined in the
nearest-neighbour approximation; i.e. they are calculated by seiting all other constants to
zero (J(zx) = 0 for Ja| = 0.5a). Furthermore table 1 shows that for distances {z| = 0.9z
the exchange constants become very small and can be neglected.

In figure 4 the calculated spin-wave dispersion curves are shown along lines of high
symmetry, A, ¥ and A. Here the notation (@, ..., wg) is that given in [18,19]. Within
the nearest-neighbour approximation their values at the I point are given by [18]

By =0  hoy=24J35 85— 1275554 Roy = hws = hog = 12788854 — 16755 Sp
heyy = 2403885 — 1673084,
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Table 1. Magnetic exchange constants Jaa (), Jpp(x) and Jpp(x), calculated by (3.5},
afld total exchange energies Jaa, Jep and Jap. Jaa = Yanaa(E)aalx) = —1.1mev,
Jep =3 . nap(z)Jas(x) = 19.9mev and Jaz = 3, nap(x)ap(x) = —135.4 mev.

@ [a/8] |@| [6] naale)  Jaalx) (meV]  npplx)  Jap(x) [meV]  nap(x)  Jap(z) [MeV]

022 0354 24 0.831

1,1, 0415 48 2877
(222 0433 8 —0.179

224) 0612 48 ~0015

(33 0650 16 0.056
(1,15)  0.650 48 0.025
©44) 0707 24 —0.063 48 0.015

026 0791 48 ~0.041

(335 0820 43 0,049
226y 0829 24 0.058

(24,6 0935 96 0.011

(3,55 0960 48 -0.022
137 0960 9% 0.017
(008 1000 12 0.032 24 0.008

(066  1.061 24 0.018

(228 1061 48 0.011

(.55  1.083 16 —0.004
57 1.083 96 —0.002
@66 1090 24 0.010

466 1173 48 ~0.004

448 1225 48 —0,003 96 —0.002

268 1275 9% —0.000

GBI 1293 43 0.003
(666 1299 8 0.010

(517 138 48 0.006
(088 1414 24 0.004 43 -0.004

(668 1458 48 0.003

888 172 16 0.000 3 0.001

Fable 2. Calculated and experimental values of nearest-neighbour exchange constants in Fes Oy,

SN mev]  JDY (meV] T (meV]

This calculation ~0.18 +0.83 —2.88
This calculation, NN app. =0.11 +0.63 292
Néel [17] -1.50 +0.04 -2.00
Glagser and Milford [18] 0 +0.24 —~2.40
Gr. Diff. In. Neutrons [29] —1.56 +0.26 ~2,38
Méglestee [30] —1.52 +0.31 242

Contrary to some experiments we obtain fiw; < hw, at the I point, or equivalently
BJND + 4708, < (6NN + 4733) S5, because our value JYY is much smaller than the
values of JYY and also J3, but is not of comparable magnitude to J5%5 as in [17,28-30].
Therefore we cannot verify a crossing of the e; and @, branches along the symmetry line
A and our dispersion curves differ from those of [17,28] in particular with respect to the
wy branch, but it is in good agreement with the approximation of Giasser and Milford [18],
where JJY = 0 and J3§ = —0.1J3F.

Since the magnitude of exchange constants J{x) decreases quickly with increasing
values of |z|, the branches ws and wg are nearly constant over the whole Brillouin zone, in
agreement with the nearest-neighbour approximation.
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Figure 4. Calculated acoustic and optic spin-wave dispersion curve of magnetite for k vectors
along the symmetry lines A, E and A in the Brillovin zone. The squares show the data of
‘Watanabe and Brockhouse [25) and the triangles are experimental results of {29].

In comparison to experiments our values of exchange energies are about 20% too large.
We assume that this is caused by constraining the directions of spins. Expensive self-
consistent calculations of angles at all sites would slightly reduce the spin-spiral energies
and exchange constants.

Since the experimental twe-subiattice exchange constants are not in good agreement
with the predictions of superexchange theory, Srivastava and co-workers [31] investigated
a three-sublattice model where the spins on the two Fe? sites are localized with Spr = 2.0
and Sg» = 2.5, In our calculations a change of the spins would yield slight differences in
the spectrum, but it does not play a dominant role like the magnitude or the ratio of the
exchange constants.

The magnitude of the spin-wave stiffness constant describes the second derivative of
the acoustic branch w; at & = 0 [24,32]:

-1
e(k) = Dk? = (Z(k . ‘t;j)zl.;}ufS; Sj.],'j(t,'j)) (E }LiS,') . 5.1)
i :

For magnetite in the nearest-neighbour approximation, (5.1) leads to {24]:

_ azzijg‘sg + 443055 — 11735 8458

3255 — 1654 52)

DNN

Our calculations give D = 715 meV A%, if we take into account all exchange constants
(5.1), and DN = 423meV A” in the nearest-neighbour approximation (5.2). The latter
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value is in good agreement with other nearest-neighbour approximations of Brockhouse and
Watanabe [33] (443 meV fﬁz) and Srivastava and Aiyar [24] (318 meV ,5;2). This result shows
that the pearest-neighbour approximation for the determination of the stiffness constant has
to be used with caution.

To estimate the Curie temperature within the mean-field approximation, the magnetiza-
tion near T is determined by the following secular equation:

ZS!,(S; - 1) E -I,uv(tﬂu - ti.u)Mu(T) = kBTCM“(T) (5.3)
ip

see for example [34,35]. In the two-sublattice model of magnetite the solution of (5.3) is
given by

kTe = adys + bisg + [(aTan — bIps)? + abJiz1'/? (54)
where
Sa(S4+1) Se(Sg + 1)
a=22 0 p=—E 2
3",4 3n3

Here our computed values of the exchange constants give kT = 139 meV (Tp = 1612K)
which is too high compared with the experimental value of Tc = 858K, see also the
discussion and table 1 of Glasser and Miiford [18].

Finally, considering recent publications [24,27,28] we find that the situation of
magnetite is quite controversial. At 122K a Vervey phase transition is observed [36,37].
Above the transition temperature magnetite possesses a high conductivity, whereas below
there exists an insulating state, being presumably brought about by a band splitting. Our
calculations describe, as do previons calculations |8, 22, 38], the metallic high-temperature
phase and not the insulating ground state, which poses an open problerm [8].

In this work it has been our purpose to investigate the magnetic properties of the high-
temperature phase and to calculate magnetic exchange constants, spin excitations and the
Curie temperature within the Heisenberg model. Using incommensurate non-collinear spin-
spiral configurations we get reasonable results for the exchange constants and spin-wave
energies, even though all values are a little too Jarge, in particular the Curie temperature.
Because of these discrepancies this can only be a first step, but still it shows that the
method shown here allows us to examine the magnetic properties of complex structures
with localized moments.
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