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Abstrad A method is presented to calculate ob initio exchange wmtanD and spin-wave 
excitations of multi-sublattice magnetic shuctw on the basis of total-energy calculations of 
incommensurate magnetic mctures. Here the exchange energies, dispersion curves and Curie 
temperarure for magnetite (FelOo) are obtained and compared with expeemental results 

1. Introduction 

Ab initio calculations of exchange integrals and order temperatures for ferromagnetic 
3d metals and their compounds is a non-trivial problem. Despite the success of band 
structure calculations in the description of ground-state properties of condensed matter, the 
determination of the temperature dependence of magnetic properties (and most others) meets 
with some difficulties. Concerning ferromagnetic metals, a number of different methods 
have been tried. In this context we mention the theory by Wohlfarth and Mohn 111, 
who determined the Curie temperatures of itinerant electron magnets from band structure 
calculations considering the effect of spin fluctuations via a renormalization of Landau 
coefficients. Another way to calculate temperature-dependent properties is by means of the 
disordered local moment theory (see for instance [2]). 

More recently, the possibility of simulating non-collinear arrangements of spins and 
particularly incommensurate spin-spiral magnetic sauctures in elementary cells 13-71 has 
led to an estimate of Heisenberg exchange integrals in metals and alloys. Rather reasonable 
estimates of Curie temperatures were thus obtained 14-71, 

In a previous paper [SI the electronic and magnetic properties of Fe304 and spinel ferrites 
were investigated. The aim of this work is to cany out calculations of exchange integrals 
for the ferrimagnetic spinel Fe304 and thus derive an estimate of its Curie temperature. 

After a description of the theoretical background, calculations of exchange integrals are 
presented together with a calculation of the spin-wave spectrum. Finally, the results are 
compared and discussed in connection with other theoretical results and with experimental 
data. 

2. Total-energy calculations of spin-spiral configurations 

To make this paper reasonably self-contained we first repeat some salient theoretical points, 
particularly when they deviate in detail from the formulation given in earlier papers [9,10]. 
The work to be described consists of self-consistent band structure and total energy 
calculations in the local density approximation [ 11,121. It makes use of the scalar relativistic 
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augmented spherical wave (Asw) method [I31 suitably generalized for dealing with rather 
general non-collinear moment arrangements of spin-spiral configurations 19, IO]. The 
effective single-particle Hamilton operator H [ l l ,  121 for spin-polarized electrons forming 
a non-collinear magnetic order is as usual obtained from the Euler-Lagrange equations 
minimizing the total energy as a functional of the density matrix, and may be written in 
bi-spinor form as [14,151 

M Uhl and B Siberchicot 

I2 = -v*1 + p J p ” ( .  - tj”)Uj,. 
I V  

Here we use the label j to designate the unit cell and the label U the basis atom, and we 
imply an atomic-sphere approximation, i.e. the effective potential V, is defined to vanish 
outside its respective atomic-sphere radius. The quantity Uj, is the standard spin-$rotation 
matrix 

- sin(8,/2) cos@,/2) exp(-iq. tjv/2) (2.2) 
O )  

 COS(^,/^) sin(6,/2)) (exp(+ipg. t j , / 2 )  ( U,” = 

which describes a transformation between a global and a local spin coordinate system where 
the directions of the local magnetization at the sites designated by the translation vectors 
{ t j y }  are given by the polar angles { O j V , @ j v }  defining a spin-spiral configuration of a spin- 
wave vector q: e,, = @, and @,” = q . tj.. 

In this case the Hamiltonian given by (2.1) commutes with generalized translations 
defined by Herring [16], who showed that a generalized Bloch theorem can be used to 
construct the eigenfunctions of the problem defined by (2.1) [14-161. This means in 
particular that for any choice of the wave vector q it is the chemical Brillouin zone that 
constitutes the domain for the IC-vectors to be used for sampling the elements of the density 
matrix. This makes self-consistent calculations feasible even for cases with a non-trivial 
unit cell, like that of Fe304. For a detailed description of calculating incommensurate spin 
spiral configurations with the non-collinear ASW method see 19,101. 

3. Calculatiou of exchange constants 

To calculate spin-wave excitations of Fe304 we assume the magnetic moments to be 
localized. By thii we mean that we can describe the spin system by the Heisenberg 
Hamiltonian 

Here &j.) is the spin located at the magnetic site labelled by t j .  and J,,(ti, - t j J  is the 
exchange constant that describes the interaction between the spins at the sites ti, and t,.. 
Treating the spins as classical observables in a spin-spiral configuration, we may prescribe 
the direction of a spin S(tjv) by its length S,, its polar angle 0.. and the spiral vector q 
expressed in Cartesian coordinates as 

S(tj,) = S,(cos(q.tj,)sine,,sin(q - t j v ) s i n ~ , , c o s e , ) .  (3.2) 
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Thus in a spin-spiral configuration the magnetic exchange energy per unit cell is given by: 

(3.3) 
The crystal structure of Fe304 is shown in figure 1. Here the iron ions are located at two 
antiparallel ordered sublattices A and E ,  consisting of two tetrahedral FeA sites (Al .  A2) 
and four octahedral FeB-sites (BI-B4). Here the classical ferrimagnetic ground state can 
be treated as a two-sublattice collinear N&l configuration [17]. In our calculations we pivot 
the spins of the iron sites only, see figure 2. Thus (3.3) gives 

CoseAnAIAc f cos6BnBIBc (3.4) 
where the size of the spin SA and the angle 6, refer to the tetrahedral FeA site, and S,, OB 
refer to the octahedral FeB site. Furthermore JAA. JBB and JAB are appropriate exchange 
constants between the iron atoms and nAA, ~ B B  and nAB their weights per unit cell. Finally, 
IAC and IBC describe the exchange energy between an iron site and the 'background', caused 
by a small magnetization of the oxygen and empty sphere sites. 

1' 1' 

Figum 1. WO octants of lhe spinel 
stmcttm of magnetite. The spins and 
be positions of the iron sites are labeled. 
The open circles represent oxygen sites. 
(From Glasser and Milford [lS]). 
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Figurc 2 Orientation of excited spins of ule 
Fe” sites and UE Fea sites; compare dso 
figure I .  FeA: mA , B A  Feg: mB ,eB 

where the quantities E ( q ,  0 ~ ,  6s) are obtained by total-energy calculations. Since the ground 
state of magnetite is ferrimagnetic we get E ( q ,  e,, es) > E(0,O. 0) for all states. 

4. Calculation of the spin-wave spectrum 

To calculate spin-wave energies we make the spin-wave approximation of considering the 
z components to be invariant and keeping only terms linear in the transverse components. 
Thus we rewrite the Hamiltonian of (3.1) as follows: 

H = - &,(ti, - tj.)(&tiP).TZ(tj,) + S+(ti,)s-(tj,)). (4.1) 
ir.jv 

In Fe304 the ground state can be approximated by a collinear ferrimagnetic eigenstate of 
two antiparallel ordered sublattices [AI and [ B ]  (Nbl [17]), which may be specified as 
10) = nj, IAYSY( t jY ) ) .  Here S,(tj ,)  denotes the spin located at the site tjy and A, the 
direction of its magnetization, i.e. A, = -1 for a tetrahedral site (U E A )  and A, = +1 for 
an octahedral site (U E B) .  The corresponding energy of the N&l ground state is 

EO = - JP.(tLP - t j , )A,A,SP(tiP)S,(t j , ) .  
i P J ”  

Using Bloch’s theorem the spin-wave energies 6(k) are determined by 

filk) = (€0 + W)lk)  (4.2) 
and 

(4.3) 

Analogous to Glasser and Milford [18] and Nauciel and co-workers 1191, but now including 
not only nearest-neighbour interactions, the solution of the eigenvalue problem defined by 
(4.2) and (4.3) leads to the following secular equation: 

Eh$,E+dO)C&) - E h J v E v P ( k ) C p ( k )  = ~ ( k ) C . ( k )  

.~,(k) = 2 C e x p [ i k .  ( t ju -to,)~~,,(tj, - toP).  

(4.4) 
P P 

where E,,@) are calculated by Fourier transformation of the exchange constants between 
the sites U and p: 

(4.5) 
j 
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5. Results and discussion 

Since the touching muffin-tin spheres only fill about 40% of the volume of the unit cell, 
we choose a set of 18 additional so-called 'empty spheres' (ES) [SI. Thus, in the space 
group Fd3m [20,21], the calculations are done with 32 sites per unit-cell, i.e. two iron sites 
FeA at the Wyckoff positions (a), four iron sites FeB at (d),  eight oxygen sites 0 at (e), 
two ES at (6). four ES at (c) and, finally, twelve ES at (f). The lattice constant is given 
by a = 8.394A [8,22] and for the Wigner-Seitz radii we use the values of PBnicaud and 
co-workers [SI. 

To calculate the density of stam self-consistently we employ a set of 216 k points 
spread uniformly over the full Brillouin zone. Whereas the collinear ferrimagnetic ground 
state has the full cubic symmetry (Oh), in excited spin-spiral configurations the symmetry 
is reduced and given by group elements ( D ] ,  which keep the spiral vector q invariant: 
Dq = q [15,23]. Therefore, the number of irreducible k points varies from 28 in the case 
of the ferrimagnetic ground state to 216 in the case of spin-spiral configurations that possess 
no symmetry. 

To describe spin waves by fixed spin-spiral calculations, we pivot the angles of the 
magnetic FeA and FeB sites, see figure 2. To include all magnetic exchange contributions, 
i.e. FeA-FeA, FeB-FeB and FeA-FeB interactions, we do spin-spiral calculations with (i) 
@A = 30" and = 30". Furthermore, to obtain the FeA-FeA and FeB-FeB contributions 
separately, we use (ii) 6?A = 30" and 6?B = 0" and (iii) 6 A  = 0" and 6?B = 30'. To obtain 
reasonable values of exchange constants by comparing total energies of the three series for 
the same values of q, we assume here that the magnetic moments of the FeA and FeB sites 
are well localized, i.e. the change in the magnetic moment AmR < 0 . 0 5 p ~  with different 
magnetic configurations. Since the magnetic moments of the oxygen- and empty-sphere 
sites mo, mES, are small (< 0.2@B), we do not pivot the spin directions of these sites and 
neglect their magnetic contributions. 

To calculate all exchange constants J(z) with e = ( X I ,  x ~ ,  xg)  up to 1x1 I, 1x21, 1x31 < a 
by Fourier summation of the exchange energies E ( q ) ,  one has to choose a cubic mesh 
of spiral vectors q with Aq] = Aq2 = A43 = n/a. Since the reciprocal volume of the 
Brillouin zone S20 is p o l  = 4 ( 2 n / ~ ) ~ ,  we require 32 q points per Brillouin zone. 

Since all magnetic sites of magnetite are fixed on positions of a Jones lattice given by a 
body centred cubic structure with a lattice constant of a' = i a ,  see figure I ,  the exchange 
energy E ( q ,  [e,]) (and in particular E ( q ,  30". 30")) is periodic with the Jones zone QAB 

having a volume of ~ Q A B ~  = 1 2 8 ( 2 n / ~ ) ~  = 321Qo1. In other words the total energy of 
(3.4), E ( q ,  0,. 6'6). describes 32 modes in the Brillouin zone. 

In the same manner, to calculate the single-sublattice excitations E ( q ,  30°, 0") by a 
pivot of only FeA spins and E ( q ,  On, 30") by a pivot of only FeB spins, one can restrict 
the reciprocal space to the Jones zone Q A A  ( Q B B )  defined by the FeA sites (FeB sites), i.e. 
IQAAI = 41Qo1 and IQBBI = W o l .  

Thus, the exchange constants J A B ( Z )  ( J A A ( z ) ,  JBB(z) )  are calculated by (3.5) using a 
mesh of 1024 (128, 256) q points in Q A B  (QAA, Q B B ) .  

Figure 3 shows the calculated energy conhibutions of (3.5): (a) E A ~ ( q )  = 

E ( q ,  30°, 30") - E(0,  30°, 30°), fitted by (3.4). Since the spin excitations are obtained by 
ground-state calculations of spin-spiral configurations, we multiply total energies by the 
ad hoc factor S/(S + 1) for (3.5). Here we use SA = and S, = $, which gives a total 
magnetization of S = 4sB -  SA = 4 [IS, 19,241. 

In table 1 we list the exchange constants JAA(z), J B B ( Z )  and J A B ( z ) ,  see (3.5). The 
quantities nAA(e), nBB(e) and n A B ( s )  of table 1 denote the number of times they appear 

E(q,30",O")-E(O,30",0"),(b) E B B ( q )  = E(q,O",30")-E(O,0",30"),and(C)E~~(q) = 
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Figure 3. (Continued) 

in the unit cell. Furthermore, the total exchange energies of the sublattices JAA, f B B  and 
j A B  are also calculated. 

Table 2 shows a comparison of calculated and experimental values of nearest-neighbour 
exchange constants. Our results confirm that the nearest-neighbour exchange constant 
between the FeA and the FeB sublattices, =  JAB(^, 1,3), plays a dominant role t18.25- 
281. Since JA" is negative, the sublattices order antiparallel. Moreover, the magnetic 
exchange between neighbouring A sites JA" = J ~ ~ ( 2 . 2 . 2 )  and neighbouring B sites 
JE = J ~ ~ ( 0 , 2 , 2 )  give substantial contributions to the exchange energy. 

In agreement with experimental values we obtain ferromagnetic coupling between 
neighbouring B sites (J:? > 0) and antiferromagnetic coupling between neighbouring 
A sites (.I:: c 0) [17,18,24,28-311. From figure 3(a) it is seen that the energy difference 
E A A ( ~ )  is negative over a wide portion of the Brillouin zone, whereas EBB(q)  (figure 3(b)) 
and E A B ( ~ )  (figure 3(c)) give positive contributions for all values of q. 

In the second line of table 2 the constants J::, J:! and J:: are determined in the 
nearest-neighbour approximation; i.e. they are calculated by setting all other constants to 
zero ( J ( z )  = 0 for IzI 2 0.5~). Furthermore table 1 shows that for distances 111 > 0.91~ 
the exchange constants become very small and can be neglected. 

In figure 4 the calculated spin-wave dispersion curves are shown along lines of high 
symmetry, A, C and A. Here the notation (U,. . . . ,u6) is that given in [18,19]. Within 
the nearest-neighbour approximation their values at the r point are given by 1181 

h03=0 R W ~ = ~ ~ J F S B - ~ ~ J ~ : S A  AOI = h W s = h U f i =  ~ ~ J , " S A - ~ ~ J E S B  
hw = 24Jt:S~ - 16J,"s~. 



. . . .  
(l,l,3) 0.415 
(22,2) 0.433 8 
(2,2,4) 0612 
(3,3.3) 0.650 
(1,1,5) 0.650 ~. 
(0.4.4) 0.707 24 
(0.2.6) 0.791 
(3.33) 0.820 
(22.6) 0.829 24 
(2,4,6) 0.935 
(333) 0.960 
(1,3.1) 0.960 

48 -2.877 
-0.179 

48 -0.015 
16 0.056 
48 0.025 

-0.063 48 0.015 
48 -0.041 

48 0.049 
0.058 

96 0.01 1 
48 -0.022 
96 0.017 

1.000 12 0.032 
1.061 
1.061 
1.083 
1.083 
1.090 24 0.010 
1.173 
1.225 48 -0.003 
1.275 
1.293 
1.299 8 0.010 
1.386 
1.414 24 0.004 

24 0.008 
24 0.018 
48 0.011 

16 -0.004 
96 -0.002 

48 -0.004 
96 -0.002 
96 -0.WO 

48 0.003 

48 0.006 
48 -0.004 

(66.8) 1.458 48 0.003 
(8.8.8) 1.732 16 0.000 32 0.W1 

Table 2. Calculated and experimental values of nearest-neighbour exchange constants in Fe304. 

This calcul5ion -0.18 4.83 -2.88 
This calculation, NN app. -0.1 I 4.63 -292 
Nkl  [ I l l  -1.50 4.04 -2.00 
Glasser and Milford 1181 0 4.24 -2.40 
Gr. Diff. In. Neueons 1291 -1.56 to26 -2.38 . .  
Moglestue [30] -1.52 4 , 3 1  -2.42 

Contrary to some experiments we obtain fro, c h@ at the r point, or equivalently 
(3J:: + 4J:r)N)s~ c (6J," + 4J::)S,, because our value JA" is much smaller than the 
values of JA" and also JE, but is not of comparable magnitude to J:: as in [17,28-301. 
Therefore we cannot verify a crossing of the 0, and @ branches along the symmetry line 
A and our dispersion curves differ from those of [17,28] in particular with respect to the 

branch, but it is in good agreement with the approximation of Glasser and Milfod 1181, 
where 

Since the magnitude of exchange constants J(z) decreases quickly with increasing 
values of 1x1, the branches w5 and ws are nearly constant over the whole Brillouin zone, in 
agreement with the nearest-neighbour approximation. 

= 0 and Jj! = -0.1 Jf". 
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r b X P r A L 
k 

Figure 4. Calculated acoustic and optic spin-wave dispersion curve of magnetite for k vectors 
along the symmetry lines A, X and A in the Brillouin zone. The squares show the dam of 
Wawnabe and Bmckhow [U] and the triangles are expenmend results of I291. 

In comparison to experiments our values of exchange energies are about 20% too large. 
We assume that this is caused by constraining the directions of  spins. Expensive self- 
consistent calculations of angles at all sites would slightly reduce the spin-spiral energies 
and exchange constants. 

Since the experimental two-sublattice exchange constants are not in good agreement 
with the predictions of superexchange theory, Srivastava and co-workers [31] investigated 
a three-sublattice model where the spins on the two FeB sites are localized with SB~ = 2.0 
and SB. = 2.5. In our calculations a change of the spins would yield slight differences in 
the spectrum, but it does not play a dominant role like the magnitude or the ratio of the 
exchange constants. 

The magnitude of the spin-wave stiffness constant describes the second derivative of 
the acoustic branch q at k = 0 [24,32]: 

For magnetite in the nearest-neighbour approximation, (5.1) leads to [Z]: 

Our calculations give D = 715meVA'. if we take into account all exchange constants 
(5.1), and D" = 423meVA' in the nearest-neighbour approximation (5.2). The latter 
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value is in good agreement with other nearest-neighbour approximations of Brockhouse and 
Watanabe 1331 (443 meV A’) and Srivastava and Aiyar [%I (318 meVA2). This result shows 
that the nearest-neighbour approximation for the determination of the stiffness constant bas 
to be used with caution. 

To estimate the Curie temperature within the mean-field approximation, the magnetiza- 
tion near TC is determined by the following secular equation: 

M Uhl and B Siberchico! 

(5.3) 

see for example [34,35]. In the two-sublanice model of magnetite the solution of (5.3) is 
given by 

(5.4) 

where 

Here our computed values of the exchange constants give k ~ T c  = 139meV (Tc = 1612K) 
which is too high compared with the experimental value of Tc = 858& see also the 
discussion and table 1 of Glasser and Milford [MI. 

Finally, considering recent publications [24,27,28] we find that the situation of 
magnetite is quite controversial. At 122K a Vervey phase transition is observed [36,37]. 
Above the transition temperature magnetite possesses a high conductivity, whereas below 
there exists an insulating state, being presumably brought about by a band splitting. Our 
calculations describe, as do previous calculations [8,22,38], the metallic high-temperature 
phase and not the insulating ground state, which poses an open problem [SI. 

In this work it has been ow purpose to investigate the magnetic properties of the high- 
temperature phase and to calculate magnetic exchange constants, spin excitations and the 
Curie temperature within the Heisenberg model. Using incommensurate non-collinear spin- 
spiral configurations we get reasonable results for the exchange constants and spin-wave 
energies, even though all values are a little too large, in particular the Curie temperature. 
Because of these discrepancies this can only be a I ts t  step, but still it shows that the 
method shown here allows us to examine the magnetic properties of complex structures 
with localized moments. 
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